This abstract was prepared for submission to the session "Synthesis and Characterization of Transactinides" at the National Meeting of the American Chemical Society in New Orleans, LA, April 6-10, 2008.

Prepared: October 17, 2007

Lightest Isotope of Bh Produced Via the ²⁰⁹Bi(⁵²Cr,n)²⁶⁰Bh Reaction

S. L. Nelson, ^{1,2} K. E. Gregorich, ¹ I. Dragojević, ^{1,2} M. A. Garcia, ^{1,2} J. M. Gates, ^{1,2} R. Sudowe, ¹§ H. Nitsche ^{1,2}

Abstract

The lightest isotope of Bh known was produced in the new 209 Bi(52 Cr,n) 260 Bh reaction at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. Positive identification was made by observation of eight correlated alpha particle decay chains in the focal plane detector of the Berkeley Gas-Filled Separator. 260 Bh decays with a 35_{-9}^{+19} ms half-life by alpha particle emission mainly by a group at 10.16 MeV. The measured cross section of 59_{-20}^{+29} pb is compared to "Fusion by Diffusion" model predictions proposed by Świątecki, Siwek-Wilczyńska, and Wilczyński. [1,2] The influence of the N = 152 and Z = 108 shells on alpha decay properties will be discussed.

[1] W. J. Świątecki, K. Siwek-Wilczyńska, and J. Wilczyński, Acta Physica Polonica B **34**, 2049 (2003).

[2] W. J. Świątecki, K. Siwek-Wilczyńska, and J. Wilczyński, Physical Review C 71, 014602 (2005).

Acknowledgements:

This work was supported by the Director, Office of Science, Nuclear Physics, U.S. Department of Energy under contract number DE-AC02-05CH11231.

¹ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

² Department of Chemistry, University of California, Berkeley, California 94720 §Present address: University of Nevada Las Vegas, Dept. of Health Physics, 4505 Maryland Parkway, Campus Box 453037, Las Vegas, NV 89154-3037